Microcamtest

Лайфстайл портал

Строение инфузории-туфельки. Питание, размножение, значение

Описание

Это одноклеточный простейший организм, который имеет все необходимые функции животных (он дышит, перемещается, питается, а также размножается). Дело в том, что инфузория туфелька имеет органы, в качестве которых выступают клетки, выполняющие определенные функции.

Жизненно необходимые функции инфузории туфельки
Жизненно необходимые функции инфузории туфельки

Как выглядит

Инфузория туфелька отличается достаточно крупными размерами. Тело вырастает до 0,5 мм в длину. Как уже упоминалось ранее, внешне данный организм очень напоминает туфельку. Функции внешней оболочки выполняет специальная мембрана, под которой находится слой цитоплазмы (пелликула).

Обратите внимание! Тонкие реснички в количестве 10-15 тысяч покрывают всю поверхность тела организма. Базальные тельца расположены в основании этих ресничек.

Как выглядит инфузория туфелька
Как выглядит инфузория туфелька

Классы инфузории

Ученые разделяют несколько основных классов инфузорий: сосущие и ресничные. В зависимости от класса строение организма может отличаться. Теперь подробнее о каждом из них.

Сосущие

На теле сосущих инфузорий нет ресничек и рта. Вместо этого организмы имеют специальные щупальца, которые выполняют функции рта. С их помощью сосущие питаются, захватывая питательные вещества.

Из-за отсутствия ресничек инфузории не могут передвигаться. Но для этого им нет необходимости, поскольку мелкие организмы с помощью присоски крепятся к телу рыбы или рака и паразитируют на нем. С этой функцией им помогает ножка-присоска. Существует достаточно мало видов сосущих инфузорий (всего несколько десятков).

Ресничные

В отличие от предыдущего вида, ресничные сородичи покрыты большим количеством маленьких ресниц. Чаще всего ресницы покрывают тело равномерно, но иногда они могут собираться в пучки. С их помощью инфузории передвигаются.

Ресничные инфузории
Ресничные инфузории

Среда обитания

Встретить инфузорий можно в небольших пресных водоемах, преимущественно со стоячей водой и с большим количеством органики, что разлагается. Важно, чтобы вода в водоеме была стоячей, иначе мелкие организмы не справятся с течением и их попросту унесет. В мелких водоемах вода более теплая, что важно для активной жизнедеятельности одноклеточных организмов. Гниющая органика является хорошим кормом.

На заметку! От степени загрязненности водоема зависит количество обитающих в нем инфузорий. Чем выше степень загрязнения, тем больше число мелких организмов.

Среда обитания и внешнее строение
Среда обитания и внешнее строение

Существует несколько особенностей в питании простейших организмов. Основу их рациона составляют бактерии, способные привлекать инфузорий при выделении особых химических веществ. Стоит отметить, что бактерии – это далеко не весь рацион. Одноклеточные могут питаться и другими мелкими частицами, которые находятся в воде. Причем не всегда такие частицы имеют хоть какую-то пищевую ценность. После усваивания пищи все ненужные вещества выходят из организма инфузории туфельки через порошицу, находящуюся в задней части.

Питание инфузории
Питание инфузории

Размножение

Микроорганизмы способны делиться двумя способами: бесполым и половым. В первом случае одна инфузория разделяется надвое. Оба организма имеют и малое и большое ядро. Половое размножение возможно при определенных факторах. Например, при нехватке пищи в водоеме или температурных скачках. Только при таких неблагополучных условиях инфузории способны к разделению полов.

Видео

Питание и органы выделения

Органеллами питания у инфузории-туфельки являются: предротовое углубление, клеточный рот и клеточная глотка. Бактерии и другие взвешенные в воде частицы вместе с водой загоняются околоротовыми ресничками через рот в глотку и попадают в пищеварительную вакуоль.

Органы питания инфузории-туфельки
Органы питания инфузории-туфельки

Наполнившись пищей, вакуоль отрывается от глотки и увлекается током цитоплазмы. По мере передвижения вакуоли пища в ней переваривается пищеварительными ферментами и всасывается в эндоплазму. Затем пищеварительная вакуоль подходит к порошице и непереваренные остатки пищи выбрасываются наружу. Инфузории перестают питаться только в период размножения.

Органеллами осморегуляции и выделения у туфельки являются две сократительные, или пульсирующие, вакуоли с приводными канальцами.

Таким образом, инфузории, в сравнении с другими простейшими, имеют более сложное строение:

  • Постоянная форма тела;
  • наличие клеточного рта;
  • наличие клеточной глотки;
  • порошица;
  • сложный ядерный аппарат.

Особенности жизнедеятельности

У инфузории-туфельки есть свойство раздражимости.Это значит, что она отвечает на действие факторов окружающей среды (раздражителей) изменением своего поведения. Раздражители — это температура, различные растворенные в воде вещества, освещение. У простейших нет нервной системы, органов чувств и рефлексов. Раздражение воспринимает вся клетка целиком. Реакцией на действие раздражителя будет таксис — это движение в сторону действующего агента или от него.Это можно продемонстрировать с помощью опытов:
  • На предметное стекло поместим две капли воды — с туфельками и чистую воду и соединим их. Затем в воду с микроорганизмами добавим кристаллы соли. Туфельки начнут быстро перемещаться в чистую воду, потому что высокое содержание соли губительно для микроорганизмов.
  • И наоборот, если в воду с инфузориями ничего не добавлять, а к чистой воде капнуть настой с бактериями, то туфельки переберутся в сторону бактерий, то есть к пищи.
  • Если через воду с этими микроорганизмами пропускать слабый электрический ток, они выстраиваются вдоль линии тока, а затем перемещаются в сторону катода. Это явление называется гальванотаксис. Оно демонстрирует способность инфузорий реагировать на воздействие раздражителей изменением поведения и связано это, по-видимому, с физико-химическим воздействием электрического тока.
Благоприятные условия для инфузории — это температура около 15-24 градусов тепла. При похолодании туфельки впадают в анабиоз и переходят в форму цисты. В этом состоянии они могут существовать годами. В обычных же условиях продолжительность их жизни около суток. Рис. 3. Сходство и отличие эвглены зеленой и хлам
Рис. 3. Сходство и отличие эвглены зеленой и хламидоманада

Строение инфузории туфельки

Строение инфузории туфельки отчасти зависит от ее класса. Их два.  Первый называется ресничным, поскольку его представители покрыты ресничками. Это волосковидные структуры, иначе именуются цилиями. Их диаметр не превышает 0,1 микрометра. Реснички на теле инфузории могут распределяться равномерно или собираться в своеобразные пучки — цирры. Каждая ресничка — пучок фибрилл. Это нитевидные белки. Два волокна являются стержнем реснички, еще 9 располагаются по периметру.

Когда обсуждается реснитчатый класс, инфузории туфельки могут иметь несколько тысяч ресничек. В противовес встают сосущие инфузории. Они представляют отдельный класс, лишены ресничек. Нет у сосущих туфелек и рта, глотки, пищеварительных вакуолей, характерных для «волосатых» особей. Зато, у сосущих инфузорий есть подобие щупалец. Таковых видов несколько десятков против многих тысяч реснитчатых.

Строение инфузории туфельки

Строение инфузории туфельки

Щупальца сосущих туфелек — полые плазматические трубочки. Они проводят питательные вещества в эндоплазму клетки. Питанием служат другие простейшие. Иначе говоря, сосущие туфельки — хищники. Ресничек сосущие инфузории лишены, поскольку не двигаются. У представителей класса есть особая ножка-присоска. С ее помощью одноклеточные закрепляются на ком-то, к примеру, крабе или рыбе, или внутри их и других простейших. Реснитчатые же инфузории активно передвигаются. Собственно за этим и нужны цилии.

Классификация

Также строение инфузории зависит от ее класса. Так различают два класса инфузории туфельки:

  • ресничные инфузории,
  • сосущие инфузории.

Далее подробно остановимся на них.

Ресничные инфузории

Названы так, поскольку их тело покрыто маленькими ресницами, которые также именуются цилиями. Длина ресницы составляет не более 0,1 микрометра. Ресницы могут, как распределятся равномерно по телу нашей простейшей красавицы, так и собираться в пучки, которые биологи называют «цирры». Сами ресницы представляют собой пучок фибрилл, которые являются нитевидными белками.

Каждая ресничная инфузория может иметь несколько тысяч таких вот ресниц. Передвижение инфузории также осуществляется при помощи ресниц.

Сосущие инфузории

Сосущие инфузории

Сосущие инфузории совсем не имеют не только ресничек, но и рта, глотки и пищеварительных вакуолей, столь характерных для их «волосатых» сородичей. Зато у них есть своеобразные щупальца, представляющие собой плазматические трубочки. Именно эти щупальца-трубочки у сосущих инфузорий выполняют функцию рта и глотки, так как захватывают и проводят питательные вещества в эндоплазму клетки.

Не имея ресниц сосущие инфузории не способны передвигаться. Впрочем, им это и не нужно, имея особую ножку-присоску, они прикрепляются к коже какого-нибудь краба или рыбы и на них живут. Сосущих инфузорий всего лишь несколько десятков видов, против тысячи видов их ресничных собратьев.

Есть ли какие-нибудь интересные научные исследован

Есть ли какие-нибудь интересные научные исследования связанные с этими инфузориями?

Как я говорил выше, резкое сокращение размеров «тела», очень интересный момент и не только для меня. Ученые из Технологического института Джорджии сделали замечательное открытие. Биолог Саад Бхамла, получив грант на изучение Spirostomum ambiguum, обнаружил невероятную способность этой инфузории с огромной скоростью сокращать своё «тело». В течение доли секунды Spirostomum ambiguum сокращает свое «тело», уменьшая его длину более чем на 60%. Это проходит с ускорением в 200 м/с² и нагрузкой равной 14g. Прямо самый быстрый организм на планете, олимпийский чемпион микромира! Это достаточно интересно, поскольку человеческому глазу не под силу заметить постепенное сокращение инфузории.

Этот механизм обеспечивает быстрое реагирование на внешние стимулы, что является ключом к выживанию. Плавающие организмы генерируют обильные потоки, которые сохраняются в водной среде и Спиростомум в ходе эволюции «научился» быстро отвечать на такой внешний сигнал. Биофизики назвали данное открытие «гидродинамическими триггерными волнами», которые распространяются — подобно цепной реакции — в сотни раз быстрее, чем скорость плавания. Исследование показало, что сокращение одной клетки (передатчик) генерирует дальние вихревые потоки, которые, в свою очередь, могут запускать соседние клетки (приемники). Результаты позволяют предположить, что такая сигнализация может способствовать организации совместно живущих сообществ на больших расстояниях и влиять на долгосрочное поведение через экспрессию генов. Так же при сокращениях выделяются токсины, синхронизированные выбросы которых, могут способствовать отпугиванию крупных хищников или обездвиживанию крупной добычи. Биологи предполагают, что схожий механизм регулирования поведения через гидродинамические триггерные волны есть и у других протистов.

Инфузория Спиростомум как индикатор загрязнения водной среды. 

Представители типа протисты всё больше привлекают внимание исследователей, занимающихся поиском надежных индикаторов загрязнения водной среды. Имея достаточно большие размеры (позволяют рассматривать организмы под малым увеличением), Spirostomum ambiguum может стать идеальным кандидатом на роль организма для биоиндикации воздействия на окружающую среду химических токсикантов, γ-излучения и электромагнитного поля. Так польскими учёными из Медицинского университета Варшавы был разработан Спиротокс (Spirotox)- краткосрочный тест на острую токсичность с применением Spirostomum ambiguum (Grzegorz Nałecz-Jawecki, 2004). Впервые он был представлен на 6-м Международном симпозиуме по оценке токсичности в Берлине в 1993 году.

В течение 10 лет была проведена оценка чувствительности S. ambiguum ко многим классам токсикантов. Было установлено, что спиротокс очень чувствителен к тяжелым металлам, фунгицидам и фармацевтическим препаратам, используемым для лечения заболеваний нервной системы человека. С другой стороны, он был в целом менее чувствителен к простым органическим веществам, чем стандартные биопробы. Спиротокс также может использоваться для анализа «цветения» цианобактерий.

Аналогичные исследования проводили и российские учёные в МГУ и Обнинском институте. Результаты этих двух исследований показывают перспективность использования Спиростомума в качестве незаменимой модели не только для выявления негативных факторов среды их обитания, но и для объяснения механизмов таких воздействий на одноклеточный и/или многоклеточный организм.

Теги